博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
深入理解Netty中的Buffer
阅读量:6656 次
发布时间:2019-06-25

本文共 6669 字,大约阅读时间需要 22 分钟。

hot3.png

1. 引言

上一篇文章我们概要介绍了Netty的原理及结构,下面几篇文章我们开始对Netty的各个模块进行比较详细的分析。Netty的结构最底层是buffer模块,这部分也相对独立,我们就先从buffer讲起。

2. Netty的4W1H

2.1 What(什么是Buffer)

buffer中文名又叫缓冲区,按照维基百科的解释,是”在数据传输时,在内存里开辟的一块临时保存数据的区域”。它其实是一种化同步为异步的机制,可以解决数据传输的速率不对等以及不稳定的问题。

根据这个定义,我们可以知道涉及I/O(特别是I/O写)的地方,基本会有buffer的存在。就Java来说,我们非常熟悉的Old I/O–InputStream&OutputStream系列API,基本都是在内部使用到了buffer。Java课程老师就教过,outputStream.write()只将内容写入了buffer,必须调用outputStream.flush(),才能保证数据写入生效!

而NIO中则直接将buffer这个概念封装成了对象,其中最常用的大概是ByteBuffer了。于是使用方式变为了:将数据写入Buffer,flip()一下,然后将数据读出来。于是,buffer的概念更加深入人心了!

Netty中的buffer也不例外。不同的是,Netty的buffer专为网络通讯而生,所以它又叫ChannelBuffer(好吧其实没有什么因果关系…)。我们下面就来讲讲Netty中的buffer。当然,关于Netty,我们必须讲讲它的所谓”Zero-Copy-Capable”机制。

2.2 When & Where(TCP/IP协议与buffer)

TCP/IP协议是目前的主流网络协议。它是一个多层协议,最下层是物理层,最上层是应用层(HTTP协议等),而在Java开发中,一般只接触TCP以上,即传输层和应用层的内容。这就是Netty的主要应用场景。

TCP报文有个比较大的特点,就是它传输的时候,会先把应用层的数据项拆开成字节,然后按照自己的传输需要,选择合适数量的字节进行传输。什么叫”自己的传输需要”?首先TCP包有最大长度限制,那么太大的数据项肯定是要拆开的。其次因为TCP以及下层协议会附加一些协议头信息,如果数据项太小,那么可能报文大部分都是没有价值的头信息,这样传输是很不划算的。因此有了收集一定数量的小数据,并打包传输的Nagle算法(这个东东在HTTP协议里会很讨厌,Netty里可以用setOption(“tcpNoDelay”, true)关掉它)。

这么说可能太抽象了一点,我们举个例子吧:

发送时,我们这样分3次写入(‘|’表示两个buffer的分隔):

+-----+-----+-----+| ABC | DEF | GHI |+-----+-----+-----+

接收时,可能变成了这样:

+----+-------+---+---+| AB | CDEFG | H | I |+----+-------+---+---+

很好懂吧?可是,说了这么多,跟buffer有个什么关系呢?别急,我们来看下面一部分。

2.3 Why(分层思想)

我们先回到之前的messageReceived方法:

public void messageReceived(        ChannelHandlerContext ctx, MessageEvent e) {    // Send back the received message to the remote peer.    transferredBytes.addAndGet(((ChannelBuffer) e.getMessage()).readableBytes());    e.getChannel().write(e.getMessage());}

这里MessageEvent.getMessage()默认的返回值是一个ChannelBuffer。我们知道,业务中需要的”Message”,其实是一条应用层级别的完整消息,而一般的buffer工作在传输层,与”Message”是不能对应上的。那么这个ChannelBuffer是什么呢?

来一个官方给的一段代码,我想这个答案就很明显了:

requestPart1 = buffer1.silice(OFFSET_PAYLOAD,buffer1.readableBytes() - OFFSET_PAYLOAD);requestPart2 = buffer2.silice(OFFSET_PAYLOAD,buffer2.readableBytes() - OFFSET_PAYLOAD);request = ChannelBuffers.wrappedBuffer(requestPart1,requestPart2);

输入图片说明

这里可以看到,TCP层HTTP报文被分成了两个ChannelBuffer,这两个Buffer对我们上层的逻辑(HTTP处理)是没有意义的。但是两个ChannelBuffer被组合起来,就成为了一个有意义的HTTP报文,这个报文对应的ChannelBuffer,才是能称之为”Message”的东西。这里用到了一个词”Virtual Buffer”,也就是所谓的”Zero-Copy-Capable Byte Buffer”了。是不是顿时觉得豁然开朗了?

我这里总结一下,如果要说NIO的Buffer和Netty的ChannelBuffer最大的区别的话,就是前者仅仅是传输上的Buffer,而后者其实是传输Buffer和抽象后的逻辑Buffer的结合。延伸开来说,NIO仅仅是一个网络传输框架,而Netty是一个网络应用框架,包括网络以及应用的分层结构。

当然,使用ChannelBuffer表示”Message”,不失为一个比较实用的方法,但是使用一个对象来表示解码后的Message可能更符合习惯一点。在Netty里,MessageEvent.getMessage()是可以存放一个POJO的,这样子抽象程度又高了一些,这个我们在以后讲到ChannelPipeline的时候会说到。

2.4 How(ChannelBuffer实现原理)

好了,终于来到了代码实现部分。之所以啰嗦了这么多,因为我觉得,关于”Zero-Copy-Capable Rich Byte Buffer”,理解为什么需要它,比理解它是怎么实现的,可能要更重要一点。

关于代码阅读,我想可能很多朋友跟我一样,喜欢”顺藤摸瓜”式读代码–找到一个入口,然后顺着查看它的调用,直到理解清楚。很幸运,ChannelBuffers(注意有s!)就是这样一根”藤”,它是所有ChannelBuffer实现类的入口,它提供了很多静态的工具方法来创建不同的Buffer,靠“顺藤摸瓜”式读代码方式,大致能把各种ChannelBuffer的实现类摸个遍。先列一下ChannelBuffer相关类图。

输入图片说明

此外还有WrappedChannelBuffer系列也是继承自AbstractChannelBuffer,图放到了后面。

3. Buffer源码解读

3.1 ChannelBuffer中的readerIndex和writerIndex

Netty中的buffer是完全重新实现的,与NIO ByteBuffer与ByteBuffer不同的是,它内部保存了一个读指针readerIndex和一个写指针writerIndex,可以同时进行读和写,而不需要使用flip()进行读写切换。AbstactChannelBuffer类里面包含了主要的读写逻辑,贴一段代码,让大家能看的更明白一点:

public void writeByte(int value) {setByte(writerIndex ++, value);}public byte readByte() {if (readerIndex == writerIndex) {throw new IndexOutOfBoundsException("Readable byte limit exceeded: "+ readerIndex);}return getByte(readerIndex ++);}public int writableBytes() {return capacity() - writerIndex;}public int readableBytes() {return writerIndex - readerIndex;}

这里readerIndex总是小于writerIndex。我觉得这样的方式非常自然,比单指针与flip()要更加好理解一些。AbstactChannelBuffer还有两个相应的mark指针markedReaderIndex和markedWriterIndex,跟NIO的原理一样,作标记用,这里不再赘述了。

3.2 字节序Endianness与HeapChannelBuffer

HeapChannelBuffer是最常用的Buffer,跟NIO HeapByteBuffer作用相当,其底层也是一个byte[]。

HeapChannelBuffer有两个子类:BigEndianHeapChannelBuffer和LittleEndianHeapChannelBuffer。这里有个很基础的概念:字节序(ByteOrder/Endianness)。字节序规定了多于一个字节的数字(int啊long什么的),如何在内存中表示。BIG_ENDIAN(大端序)表示高位在前,按照大端序,整型数12会被存储为0 0 0 12这样四个字节,而LITTLE_ENDIAN则正好相反。可能搞C/C++的程序员对这个会比较熟悉,而Javaer则比较陌生一点,因为Java已经把内存给管理好了。但是在网络编程方面,根据协议的不同,不同的字节序也可能会被用到。目前大部分协议还是采用大端序,可参考RFC1700。

了解了这些知识,我们也很容易就知道为什么会有BigEndianHeapChannelBuffer和LittleEndianHeapChannelBuffer了。

3.3 DynamicChannelBuffer

DynamicChannelBuffer是一个很方便的Buffer,之所以叫Dynamic是因为它的长度会根据内容的长度来扩充,你可以像使用ArrayList一样,无须关心其容量。DynamicChannelBuffer实现自动扩容的核心在于ensureWritableBytes方法,算法很简单:在写入前做容量检查,容量不够时,新建一个容量x2的buffer,跟ArrayList的扩容是相同的。贴一段代码吧(为了代码易懂,这里我删掉了一些边界检查,只保留主逻辑):

public void writeByte(int value) {    ensureWritableBytes(1);    super.writeByte(value);}public void ensureWritableBytes(int minWritableBytes) {    if (minWritableBytes <= writableBytes()) {        return;    }    int newCapacity = capacity();    int minNewCapacity = writerIndex() + minWritableBytes;    while (newCapacity < minNewCapacity) {        newCapacity <<= 1;    }    ChannelBuffer newBuffer = factory().getBuffer(order(), newCapacity);    newBuffer.writeBytes(buffer, 0, writerIndex());    buffer = newBuffer;}

3.4 CompositeChannelBuffer

CompositeChannelBuffer是由多个ChannelBuffer组合而成的,可以看做一个整体进行读写。这里有一个技巧:CompositeChannelBuffer并不会开辟新的内存并直接复制所有ChannelBuffer内容,而是直接保存了所有ChannelBuffer的引用,并在子ChannelBuffer里进行读写,从而实现了”Zero-Copy-Capable”。来段简略版的代码,应该更能说明其原理:

public class CompositeChannelBuffer{    //components保存所有内部ChannelBuffer    private ChannelBuffer[] components;    //indices记录在整个CompositeChannelBuffer中,每个components的起始位置    private int[] indices;    //缓存上一次读写的componentId    private int lastAccessedComponentId;    public byte getByte(int index) {        //通过indices中记录的位置索引到对应第几个子Buffer        int componentId = componentId(index);        return components[componentId].getByte(index - indices[componentId]);    }    public void setByte(int index, int value) {        int componentId = componentId(index);        components[componentId].setByte(index - indices[componentId], value);    }}

查找componentId的算法再次不作介绍了,大家自己实现起来也不会太难。值得一提的是,基于ChannelBuffer连续读写的特性,使用了顺序查找(而不是二分查找),并且用lastAccessedComponentId来进行缓存。

3.5 ByteBufferBackedChannelBuffer

前面说ChannelBuffer是自己的实现的,其实只说对了一半。ByteBufferBackedChannelBuffer就是封装了NIO ByteBuffer的类,用于实现堆外内存的Buffer(使用NIO的DirectByteBuffer)。当然,其实它也可以放其他的ByteBuffer的实现类。代码实现就不说了,也没啥可说的。

3.6 WrappedChannelBuffer

输入图片说明

WrappedChannelBuffer都是几个对已有ChannelBuffer进行包装,完成特定功能的类。代码不贴了,实现都比较简单,列一下功能吧。

输入图片说明

至此Netty 3.7的buffer部分我们基本了解了,相关内容还是比较简单的,也没有太多费脑细胞的地方。

Netty 4.0之后就不同了,ChannelBuffer改名ByteBuf,成为了单独项目buffer,并且为了性能优化,加入了BufferPool之类的机制,已经变得比较复杂了(本质倒没怎么变)。性能优化是个比较复杂的事情,研究源码时,建议先避开这些东西,了解其整体结构,等到需要深入时再对算法进行细致研究。举个例子,Netty4.0里为了优化,将Map换成了Java 8里6000行的ConcurrentHashMapV8,你们感受一下…

下篇文章我们开始讲Channel。

转载于:https://my.oschina.net/jimilee/blog/745375

你可能感兴趣的文章
python文件读写,以后就用with open语句
查看>>
10.19 iptables规则备份和恢复 firewalld的9个zone firewalld关
查看>>
自然语言处理NLP(三)
查看>>
苏州大学GCT
查看>>
go语言碎片整理之 time
查看>>
spring mvc 返回json 数据
查看>>
区块链教程Fabric1.0源代码分析Ledger blkstorage block文件存储
查看>>
JAVAScript强大的框架:Jquery(一)
查看>>
网络技术工作在哪里
查看>>
玩转Linux - shell 编程基础(二)
查看>>
我的友情链接
查看>>
马哥2016全新Linux+Python高端运维班第三周作业
查看>>
!.NET 4.0并行计算深入解读(FOR,FOREACH,Invoke)
查看>>
NFinal 揭秘之控制器
查看>>
apxs动态安装扩展模块
查看>>
java-第八章-幸运抽奖-实现注册功能
查看>>
连接池和数据源
查看>>
httpd服务的简单配置
查看>>
系统管理员权限的用户过多
查看>>
Netty高性能之道
查看>>